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On the flow past a magnetic obstacle
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This paper analyses numerically the quasi-two-dimensional flow of an incompressible
electrically conducting viscous fluid past a localized zone of applied magnetic field,
denominated a magnetic obstacle. The applied field is produced by the superposition of
two parallel magnetized square surfaces, uniformly polarized in the normal direction,
embedded in the insulating walls that contain the flow. The area of these surfaces
is only a small fraction of the total flow domain. By considering inertial effects in
the analysis under the low magnetic Reynolds number approximation, it is shown
that the flow past a magnetic obstacle may develop vortical structures and eventually
instabilities similar to those observed in flows interacting with bluff bodies. In the
small zone where the oncoming uniform flow encounters the non-negligible magnetic
field, the induced electric currents interact with the field, producing a non-uniform
Lorentz force that brakes the fluid and creates vorticity. The effect of boundary layers
is introduced through a friction term. Due to the localization of the applied magnetic
field, this term models either the Hartmann braking within the zone of high magnetic
field strength or a Rayleigh friction in zones where the magnetic field is negligible.
Finite difference numerical computations have been conducted for Reynolds numbers
Re = 100 and 200, and Hartmann numbers in the range 1 � Ha � 100 (Re and Ha are
based on the side length of the magnetized square surfaces). Under these conditions, a
wake is formed behind the obstacle. It may display two elongated streamwise vortices
that remain steady as long as the Hartmann number does not exceed a critical value.
Once this value is reached, the wake becomes unstable and a vortex shedding process
similar to the one observed in the flow past bluff bodies is established. Similarities
and differences with the flow around solid obstacles are discussed.

1. Introduction
The effect of a uniform magnetic field on the flow around solid obstacles has attrac-

ted the attention of many researchers since the pioneering works by Stewartson (1956)
and Ludford (1960). Kolesnikov & Tsinober (1972) observed that vortices created due
to an array of cylindrical obstacles in the presence of a strong magnetic field aligned
their axes in the field direction. Recently, Mück et al. (2000) have carried out an
extensive numerical study of the magnetohydrodynamic (MHD) flow around a square
cylinder placed in an insulated rectangular duct. They investigated the formation and
transport of vortices under the influence of a uniform magnetic field aligned with
the cylinder. This flow was also studied experimentally by Frank, Barleon & Müller
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(2001), who addressed the onset of time-dependent vortex shedding. These studies
have confirmed the well-known tendency of this kind of MHD flow to become quasi-
two-dimensional. The vortices in the wake behind the obstacle evolved to have their
axes aligned with the magnetic field while they were damped out in the boundary
layers due to Hartmann braking. However, the effect of non-uniform fields in MHD
flows with or without solid obstacles has not been widely explored. Most of the studies
that deal with flows in non-uniform fields are restricted to duct flows with a field that
varies in the streamwise direction such as, for instance, flows at the entrance or exit
of the poles of a magnet (e.g. Lavrent’ev et al. 1990; Sterl 1990; Ting et al. 1993;
Sellers & Walker 1999). As it will be shown in this paper, the flow of a conducting
fluid passing a localized zone of applied magnetic field exhibits some features similar
to those observed in ordinary flows around solid obstacles. In order to emphasize the
analogy with this kind of flow, we introduce the term magnetic obstacle to describe the
obstruction found by the fluid as it moves through a zone of localized non-uniform
magnetic field.

The flow of conducting fluids in non-uniform magnetic fields is of interest in many
technological applications. For instance, blanket designs in Tokamak toroidal confine-
ment fusion systems rely on knowledge of the flow dynamics and heat transfer of
conducting liquids under strong non-uniform magnetic fields (Abdou et al. 2001).
Although steady models of fusion MHD flows grasp many important features,
unsteady flow analysis is required to provide realistic simulations for design purposes.
However, most of the studies devoted to the analysis of fusion MHD flows are
based on stationary inertialess assumptions. The rationale of this approach lies in the
hope that under fusion operation conditions, a suppression of time-dependent inertial
flows by magnetic damping could occur. However, this might not be the case and,
in fact, the promotion of non-steady inertial flows is even desirable for heat transfer
enhancement purposes (Reed & Picologlou 1989; Bühler 1996; Burr et al. 2000; Mück
et al. 2000).

Vortices can be generated in MHD flows without solid obstacles. In pressure-driven
duct flows, vorticity can be created under fringing fields or through an expansion
or contraction in a uniform field (e.g. Sellers & Walker 1999; Walker & Picologlou
1995). The destabilization of the side layer jets attached to the sidewalls parallel to
the magnetic field of a rectangular conducting duct has also been observed (Reed &
Picologlou 1989; Burr et al. 2000). Several works of particular relevance for the present
investigation have shown that the existence of electromagnetic non-uniformities in the
flow, which can be considered as electromagnetic obstacles, may promote the genera-
tion of internal shear layers and the appearance of flow instabilities when inertial
effects are not negligible. Alpher et al. (1960) studied experimentally the shallow flow
of mercury in an insulating open channel in which a copper disk much thinner than
the fluid depth was mounted on the bottom. They observed a stagnation zone above
the disk so that the flow acted as if a solid cylinder were immersed in the flow. They
also observed the formation of a Kármán vortex street in the wake of the disk. In
turn, in a theoretical study Bühler (1996) investigated a quasi-two-dimensional flow
in a flat channel with non-uniform electrical wall conductivity under a strong uniform
magnetic field. He was able to show that inhomogeneity in the wall conductivity may
develop an instability that leads to time-dependent solutions similar to the Kármán
vortex street behind bluff bodies. On the other hand, in an experiment shown by
Shercliff (1965) in an educational film, a layer of mercury at rest is placed in between
the poles of a magnet. As the magnet is moved manually, a vortex-type flow develops
in the zone affected by the magnetic field and a wake is created.
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Honji (1991) and Honji & Haraguchi (1995) performed experimental studies on the
flow induced by the interaction of a localized moving magnetic field with an electric
current applied through a thin layer of salt water. In Honji (1991) two permanent
magnets were located externally so that a small zone of the layer was between a
north–south pole magnetic field. The magnets were moved at a constant velocity
along the centreline of a water tank while a steady electric current was imposed on
the fluid layer transversally to the motion of the magnets. Depending on the velocity
of the magnet pair and the imposed electric current, Honji observed a wavy motion in
the far wake behind the region influenced by the field. In Honji & Haraguchi (1995) a
single moving magnet was placed on the bottom of the tank and attention was focused
on the near wake. Steady symmetric vortex pairs were observed in a limited range of
Reynolds numbers and Lorentz force intensities. As the Lorentz force increased, the
symmetric vortex pair collapsed to form an unsteady periodic Kármán-like flow. In
works by Alpher et al. (1960) and Bühler (1996) internal shear layers were created by
non-uniform electrical boundary conditions at the channel walls. In contrast, in the
experiments by Shercliff (1965), Honji (1991) and Honji & Haraguchi (1995) shear
layers were promoted by localized gradients of magnetic field.

In this paper, we investigate the production of vorticity by Lorentz forces in a low
magnetic Reynolds number flow without solid obstacles. We use a fully numerical
approach to analyse the quasi-two-dimensional flow of a conducting incompressible
viscous fluid in a zone where a localized magnetic field source, produced by two
small magnetized square surfaces, exists. Unlike Honji’s experiments, the flow is not
influenced by applied electric currents. The main interest is to investigate the possibility
of generating steady and unsteady vortices due to localized magnetic field gradients.

2. Formulation
We consider the flow of an electrically conducting incompressible viscous fluid

between two rigid insulating parallel walls under an applied non-uniform magnetic
field, B0 = B0(x, y, z). The field is created by the superposition of two magnetized
insulating rectangular surfaces uniformly polarized in the normal direction, for
which an explicit analytical expression is available (McCaig 1977). The surfaces
are placed opposite each other, embedded on the bottom and top walls with opposing
polarization axes (see figure 1a). In this way, although a three-dimensional field exists
in the fringing regions, the dominant contribution of the applied field comes from
the component normal to the walls that lies along the z-direction. Due to its fast
decay, the field presents high intensity only in a localized zone which is assumed to
be distant from the inlet/outlet region as well as from the lateral boundaries. At
the entrance, a steady unidirectional flow with a uniform velocity is imposed in the
positive x-direction. Far from the region of intense field the flow is undisturbed. The
motion of the fluid within the applied field induces electric currents which, in turn,
generate an induced field b, so that the total magnetic field is given by B = B0 + b.
Since the confining walls are assumed to be electrically insulated, electric currents
form closed loops within the fluid. Some cross-sectional currents (in the y, z-plane)
are closed near the walls through Hartmann layers formed due to the normal field
component, mostly in the zone of high-field intensity. However, current loops are also
formed in planes parallel to the walls (in the x, y-plane), as will be discussed below.
The latter interact with the magnetic field, giving rise to a non-uniform Lorentz force
that brakes the fluid flow and creates vorticity in the bulk. In turn, Hartmann braking,
generated due to cross-sectional loops, tends to stabilize the flow. The global effect is



230 S. Cuevas, S. Smolentsev and M. A. Abdou

L

H

XdXu

Flow

0 1 2–1–2

2

x

y

B0
z

(b)

Applied magnetic
field isolines

(a)

(c)

Flow

Magnetized
surfaces

Insulating
walls

B0

x
z

y

0

–2

–1

1

x

y

Figure 1. (a) Sketch of the magnetic obstacle flow problem. (b) Applied magnetic field
distribution in the bulk flow. (c) Geometrical parameters and flow configuration.

that the localized magnetic field acts as an obstacle for the flow. Unlike solid obstacles
that occupy a defined space region, the magnetic obstacle has an appreciable influence
not only in the zone covered by the magnetized surfaces but also beyond their edges
in what we call here the fringing zones. When referring to the magnetic obstacle, both
the fringing zones and the area covered by the magnetized surfaces are considered.
Although this is not a strict definition, the magnetic obstacle is identified as the
zone where all the flow variables experience significant variations. Notice that the
characteristic size of the magnetic obstacle, and consequently the extent of the region
where the flow is substantially altered, is not determined only by the dimensions of
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the magnetized surfaces but also depends, for a given fluid, on the magnetic field
strength and the oncoming flow velocity.

In this work, the problem is formulated using the flow velocity, the pressure and the
induced magnetic field, assuming the induced field to be much smaller than the applied
field, b � B0. In terms of dimensionless parameters, this implies that the magnetic
Reynolds number, Rm = µσUL, is much less than unity, a condition that holds in most
laboratory and industrial flows with liquid metals, molten salts and electrolytes. Here,
µ and σ are the magnetic permeability and the electrical conductivity of the fluid,
respectively, U is the undisturbed velocity at the entrance of the integration domain
and L is a characteristic length. Under the approximation Rm � 1, the governing
equations of motion in dimensionless form are

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
∇2u +

Ha2

Re
j × B0, (2.2)

where the velocity u, the pressure p, the electric current density j , and the applied
field B0 are normalized by U , ρU 2, σUBmax and Bmax, respectively, where ρ is the mass
density of the fluid and Bmax is the maximum magnetic field strength. Dimensionless
coordinates x, y and z are all normalized by L while time t is normalized by L/U .
Notice that in equation (2.2) the contribution of b to the Lorentz force has been
neglected. In addition, the dimensionless parameters

Ha = BmaxL

√
σ

ρν
, Re =

UL

ν
(2.3)

stand for the Hartmann and Reynolds numbers, respectively, where ν is the kinematic
viscosity of the fluid. The Hartmann number squared gives an estimate of magnetic
forces compared to viscous forces while the Reynolds number denotes the ratio of
inertia and viscous forces. The Hartmann and Reynolds numbers can be combined to
form the interaction parameter N = Ha2/Re, which represents the ratio of magnetic
forces and inertia forces.

The electromagnetic equations in the MHD approximation (Moreau 1990) are

∇ × E = −∂ B
∂t

, ∇ × B = Rm j , (2.4)

∇ · B = 0, j = E + u × B, (2.5)

where the electric field E is normalized by UBmax. Equations (2.4) and (2.5) can be
combined to give the so-called induction equation (Moreau 1990). If the assumption
B = B0 + Rmb is made, the induction equation is

Rm
∂b
∂t

= ∇2b + (B0 · ∇)u − (u · ∇)B0 + Rm(b · ∇)u − Rm(u · ∇)b, (2.6)

where the induced magnetic field b is normalized by RmBmax. Under the approximation
Rm � 1, the induction equation reduces to its quasi-static form, namely,

∇2b + (B0 · ∇)u − (u · ∇)B0 = 0. (2.7)

The induced field implicitly satisfies the equations

∇ · b = 0, ∇ × b = j . (2.8a, b)

In practice, Ampere’s law (2.8b) gives an expression to calculate electric currents once
b is determined. This equation also guarantees that the electric current density is
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divergence-free, ∇ · j =0. Further, the applied magnetic field must satisfy the mag-
netostatic equations, namely,

∇ · B0 = 0, ∇ × B0 = 0, (2.9)

which assure the solenoidal and irrotational character of B0.

2.1. Applied magnetic field

In order to simplify the numerical implementation, we assume that the applied mag-
netic field consists only of the dominant component in the normal direction, a common
assumption in problems with non-uniform magnetic fields (Talmage & Walker 1988;
Sterl 1990; Lavrent’ev et al. 1990; Ting et al. 1993; Sellers & Walker 1999). In these
studies, one-dimensional approximations of fringing fields have been found to give
reasonable results in many MHD duct flows. In dimensional terms, on placing the
coordinate system in the centre of a rectangular surface with side lengths X0 = 2a and
Y0 = 2b, the normal component of the field produced by a single magnetized surface
lying on the plane Z = Z0 is given by (McCaig 1977)

B0
z = γBmax

{
tan−1

(
(X + a)(Y + b)

(Z − Z0)[(X + a)2 + (Y + b)2 + (Z − Z0)2]1/2

)

+ tan−1

(
(X − a)(Y − b)

(Z − Z0)[(X − a)2 + (Y − b)2 + (Z − Z0)2]1/2

)

− tan−1

(
(X + a)(Y − b)

(Z − Z0)[(X + a)2 + (Y − b)2 + (Z − Z0)2]1/2

)

− tan−1

(
(X − a)(Y + b)

(Z − Z0)[(X − a)2 + (Y + b)2 + (Z − Z0)2]1/2

)}
, (2.10)

where B0
z stands for the dimensional applied magnetic field and γ is a normalization

constant. Actually, (2.10) gives the normal component of the magnetic field generated
by a finite size dipole and is a good approximation of a fringing magnetic field. For
the sake of simplicity, we consider that the magnetized surface has a square shape,
that is, 2a = 2b = L. Therefore, L is taken as the geometrical length scale used to
non-dimensionalize the flow variables. We consider the superposition of two such
parallel surfaces of the same size but with opposing polarization axes separated by
a distance 2h and embedded on the bottom and top walls. Therefore, surfaces are
located at Z = −h and Z = h.

We also assume that the applied magnetic field is an independent function of the
z-coordinate. If fact, the variation of the applied field in the normal direction is slight
since the separation between the walls is small compared to the length of the flow
domain in the x- and y-directions (see § 4.4). This variation is noticeable only very
close to the top and bottom magnetized surfaces. Therefore, in the bulk of the flow the
z-dependence can be neglected. Figure 1(b) shows the dimensionless distribution of the
normal component of the field in the bulk of the flow obtained by the superposition
of two magnetized surfaces. The normalization constant γ in (2.10) has been set in
such a way that the maximum field strength in the central region is equal to 1. B0

z

displays a rapid decay as the distance from the centre grows: it decays to 0.6 at the
edge of the magnetized surfaces and to 0.03 when the distance from their centre is
twice the side length of the square surfaces. Notice that border effects due to the
square shape of the magnetized surfaces are smoothed out in the bulk.

While the three-dimensional expression of the field produced by the magnetized sur-
faces satisfies exactly the magnetostatic equations (2.9), if only the normal component
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is kept the field is no longer curl-free. However, retaining only this component is con-
sistent with its dominant role in determining the flow dynamics. In fact, the magnetic
field components in the x- and y-directions are very weak compared to the normal
component and their influence on the flow is small. The magnetic field distributions
considered here provide a good picture of the fringing effect and lead to reasonable
results.

2.2. Quasi-two-dimensional approximation

In principle, the flow past a magnetic obstacle has a three-dimensional behaviour,
mostly related to the existence of boundary layers at the solid boundaries. In fact,
two different kinds of bounday layers are present, namely Hartmann layers within
the magnetic obstacle zone and classic viscous boundary layers in the domain where
the magnetic field is negligible. Therefore, generally speaking, a three-dimensional
flow solution should be implemented. In the past, only a few time-dependent three-
dimensional MHD computations have been performed over a finite-size domain (e.g.
Mutschke et al. 1997; Mück et al. 2000). The flow past a magnetic obstacle is, however,
significantly different from those mentioned above, since in both x- and y-directions
the flow is unbounded. This requires boundary conditions to be formulated at infinity
(for details on implementation of the boundary conditions see also § 4.1). The extension
of the integration domain to infinity along with limitations on the integration time
step due to stability considerations, make the three-dimensional computations for this
case extremely costly. Based on our estimations, such computations are not feasible
even if parallel computations are used. Fortunately, a simplified quasi-two-dimensional
approach that retains the most important features of the flow can be applied. In fact,
quasi-two-dimensionalization of flows occurs in a number of special cases, which are
described very well in the literature. In addition to the suppresson of wall-normal
motions by the action of a strong magnetic field (Sommeria & Moreau 1982) a few
analogous mechanisms exist. For example, the force of gravity in a stratified flow
(Voropayev, Afanasyev & Filippov 1991), the Coriolis force in a rotating homogeneous
fluid (Zavala Sansón, van Heijst & Backx 2001) or the surface tension in a soap
film (Couder & Basdevant 1986) tend also to two-dimensionilize the flow. Quasi-
two-dimensional flows are also possible when a significant geometrical confinement is
imposed, as in motions generated in shallow fluid layers. With a quasi-two-dimensional
approach, the problem is usually formulated in terms of core variables, but the effect
of the boundary layers is still included through an additional term in the momentum
equation accounting for the wall friction.

We now justify the applicability of the quasi-two-dimensional approach to the
reference case and specify particular conditions when three-dimensional effects can be
neglected. With this aim, we consider two separate flow regions, namely the magnetic
obstacle zone and the exterior zone, where the applied magnetic field is negligible. In
the magnetic obstacle zone, the characteristic length scale in the (x, y)-plane is given
by the size of the magnetized plates. Here, perturbations in the normal direction tend
to be inhibited by the action of the strong magnetic field and a quasi-two-dimensional
flow is promoted. The same mechanism is responsible for two-dimensionalization in
MHD channel flows under strong magnetic fields. In the analysis of this kind of flow
it is usual to split the flow domain into core and boundary layer regions (e.g. Müller &
Bühler 2001). The most common boundary layers are the Hartmann layers formed at
walls normal to the applied magnetic field. In a strong transverse magnetic field, the
Hartmann layers are very thin (O(Ha−1)) and the core flow variables present a very
slight variation along the magnetic field lines. Under these conditions it is reasonable
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to reduce the computational effort of solving a three-dimensional problem to a
two-dimensional flow formulation for the core variables. Such an approach, originally
established by Sommeria & Moreau (1982) in the context of turbulent flows in insulat-
ing wall ducts, has been successfully applied to a number of MHD channel flows by
integration (averaging) of the equations along the magnetic field lines (e.g. Bühler
1996; Smolentsev 1997). In these cases, a uniform magnetic field extends over the whole
flow region and the resulting quasi-two-dimensional flow retains the three-dimensional
MHD effects through the Hartmann friction and a forcing term. The averaging pro-
cedure has also been applied to MHD flows under non-uniform magnetic fields. This
was done by the first time in Lavrent’ev et al. (1990) where a steady channel flow of
an electrically conducting fluid under a strong non-uniform field that varied along the
duct axis was analysed. Three-dimensional effects due to the presence of Hartmann
layers were introduced through a local Hartmann velocity profile along the magnetic
field direction. This assumption was justified by both experimental (Bocheninskii
et al. 1971) and theoretical (Kalyutik, Lavrent’ev & Serebryakov 1986) studies that
demonstrated that even with low Hartmann numbers and interaction parameters the
longitudinal velocity approached a local Hartmann profile. In addition, the effect of
axial currents was introduced by solving the equation for the electric potential.

In the exterior zone, where the magnetic field does not directly affect the flow, three-
dimensional perturbations are inhibited by the geometrical confinement. Here, the
relevant length scale in the (x, y)-plane is given by the size of the vortical structures
which are formed in the wake past the magnetic obstacle. In fact, this length scale
is much larger than the characteristic dimension of the magnetic obstacle since the
vortices tend to expand while proceeding downstream, as shown below. The conditions
of the geometrical confinement that assure quasi-two-dimensionality are therefore easy
to satisfy, provided that the distance between the solid boundaries is comparable
with the size of the magnetic obstacle. Under these conditions, the same averaging
procedure can be applied, leading to quasi-two-dimensional equations for the core
variables. This is, for instance, the approach followed by Satijn et al. (2001) and Clercx,
van Heijst & Zoeteweij (2003) in modelling shallow water flows where the bottom
friction is parameterized through an additional linear term often referred as Rayleigh
friction. It should be noted that the core variables obtained by integrating the equa-
tions over the magnetic obstacle zone coincide with the real distributions in the core,
while the core variables within the exterior region just represent the result of integra-
tion. From this point of view, the averaging approach is more accurate when it is
applied to the magnetic obstacle zone.

Following the quasi-two-dimensional approach, we assume that the transport of
momentum in the normal direction is mainly diffusive so that the velocity components
can be expressed in the form

u(x, y, z, t) = u(x, y, t)f (x, y, z), v(x, y, z, t) = v(x, y, t)f (x, y, z), (2.11)

where u and v are the velocity components in the x- and y-directions, respectively,
averaged in the normal direction (core variables), and the function f accounts for
the variation of the velocity profile in this direction. Its dependence on the x- and
y-coordinates must reflect the different flow regions due to the localization of the
magnetic field. The function f must satisfy non-slip conditions at the walls, as well as
the symmetry condition ∂f/∂z = 0 at the mid-plane. In addition, f must also satisfy
the normalization condition, namely

∫ α

0
Uf dz = α, where α =h/L is the aspect ratio,

L being the relevant length scale of the flow in the (x, y)-plane. The form (2.11) is
a strong assumption but is a reasonable approximation when the magnetic field is
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strong or when h � L. As already mentioned, the scale L is different for the two
flow regions.

Similarly to Lavrent’ev et al. (1990), we assume that the normal variation of the
velocity components is given by the function f as follows:

f =
αHa

αHa − tanh(Haα)

(
1 − cosh(Haz)

cosh(Haα)

)
, (2.12)

where the local Hartmann number is defined as Ha(x, y) = HaB0
z (x, y). If equations

(2.11) and (2.12) are substituted in (2.1) and (2.2) and integrated in the z-coordinate
from 0 to α, taking into account that walls are electrically insulated, a two-dimensional
system of equations is obtained:

∂u

∂x
+

∂v

∂y
= 0, (2.13)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re
∇2

⊥u − u

τ
+

Ha2

Re
jyB

0
z , (2.14)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re
∇2

⊥v − v

τ
− Ha2

Re
jxB

0
z , (2.15)

where the overline in the velocity components has been dropped and the subindex ⊥
denotes the projection of the ∇ operator on the (x, y)-plane. In addition to viscous
dissipation effects in this plane, represented by the second term on the right-hand
side of equations (2.14) and (2.15), terms taking into account the Hartmann–Rayleigh
friction are also present. These involve a characteristic time scale, τ , for the decay of
vorticity due to dissipation in the Hartmann and viscous layers. The inverse of this
timescale is given by

τ−1 =
1

αRe

∂f

∂z

∣∣∣∣
α

0

=
Ha2

Re

sinh(αHa)

αHa cosh(αHa) − sinh(αHa)
. (2.16)

Notice that for Ha � 1, equation (2.16) reduces to the usual form of the Hartmann
braking coefficient, namely, τ−1 = Ha/αRe. In fact, τ is the ratio of a typical eddy
turnover time L/U and a typical time scale for the Hartmann braking, (h/Bmax)
(ρ/σν)1/2. In turn, if Ha → 0 (which occurs outside the obstacle region) it can be
shown from a Taylor’s expansion that the coefficient becomes τ−1 = λL/U where
λ= 3ν/2h2 is the inverse of a viscous diffusion time. This limit corresponds to the
viscous friction in the Hele–Shaw approximation (Bühler 1996).

Equations (2.13)–(2.15) retain the time dependence associated with inertial effects.
Under this approximation the flow dynamics is determined by the interaction of the
normal component of the applied field with current loops in planes parallel to the
walls as well as by the Hartmann–Rayleigh friction in the boundary layers. However,
we will consider conditions where inertial effects dominate over Hartmann–Rayleigh
friction, namely conditions where the time scales for Hartmann braking and viscous
diffusion are much larger than the eddy turnover time. In fact, since we are assuming
that confining walls are insulating, the damping due to Hartmann braking near the
obstacle region is weaker than, for instance, with conducting walls (Bühler 1996).
Several numerical tests have shown that for the flow regimes analysed in the present
study, the dominance of inertial effects over Hartmann braking in the magnetic
obstacle region is assured provided that h/L = 2. Under these conditions, it is also
assured that outside the obstacle the viscous diffusion time is much larger than
the eddy turnover time. In fact, this condition is expressed through the inequality
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2α2Re(L/3L) � 1, which is satisfied for the Reynolds numbers explored (100 and
200) since the length scale of the flow outside the obstacle, L, is about an order of
magnitude larger than the length of the magnetized plates L (see § 5). In this way, the
confinement condition h � L is also satisfied.

In the quasi-two-dimensional approximation the induction equation (2.7) reduces
to a single equation for the component bz:

∇2
⊥bz − u

∂B0
z

∂x
− v

∂B0
z

∂y
= 0. (2.17)

From Ampere’s law (2.8b), the current density components in the bulk are given by

jx =
∂bz

∂y
, jy = −∂bz

∂x
. (2.18)

Equations (2.18) show that the induced magnetic field serves as a stream function for
the electric current density. Therefore, lines of bz = const. are current streamlines.

Ultimately, the quasi-two-dimensional flow approximation can only be validated
by comparison with three-dimensional calculations and experimental measurements.
The experimental studies by Honji (1991) and Honji & Haraguchi (1995) in a thin
layer of an electrolytic solution seem to indicate that a reasonable simulation of this
kind of phenomenon can be achieved with a quasi-two-dimensional approach.

Finally, boundary conditions must be established for the core velocity and induced
magnetic field. We assume that far away from the magnetic obstacle, a steady uniform
flow in the positive x-direction is imposed. With the origin of coordinates located
at the point of maximum magnetic field strength, the boundary conditions for the
velocity components are

u → 1 v → 0, as x, y± → ∞. (2.19)

It is expected that the strength of the induced magnetic field is higher near the zone
where the applied field is strong. As the distance from the source of the applied field
grows, the induced field must decrease and vanish at infinity. Therefore, it must satisfy

bz → 0 as x, y → ±∞. (2.20)

In § 4.1 these conditions are adapted for the numerical implementation. In
figure 1(c), the geometrical parameters and the configuration of the quasi-two-
dimensional core flow are shown. The centre of the magnetic obstacle, that is,
the point of maximum magnetic field strength, is located at a distance Xu from the
inlet and a distance Xd from the outlet. Xu and Xd are measured in units of the
characteristic length L. H is the separation between the lateral boundaries which
determines the solid blockage of the confined flow characterized by the blockage
parameter, β =1/H . It can be observed that the applied magnetic field isolines form
concentric circles inside and outside the region covered by the magnetized plates.

3. Preliminary description of the flow
We offer here an introductory qualitative description of the phenomena involved

in the flow past a magnetic obstacle. This flow has some resemblance with the duct
flow at the entrance/exit of a magnet (Müller & Bühler 2001; Moreau 1990), though
the size of the obstacle and the absence of lateral (side) walls change the flow struc-
ture strongly. The fluid passing through the magnetic obstacle encounters mainly
four different regions of fringing magnetic field. The lateral fringing regions have a
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secondary effect on the flow in most cases while inlet and outlet fringing regions are
always of primary importance. In a short distance (on the order of the characteristic
length of the obstacle), the oncoming fluid passes from a region of nearly zero magnetic
field to one with O(1) strength, and then again to a region of negligible field. Different
flow regimes can be observed depending on the values of the Reynolds and Hartmann
numbers. For the Reynolds numbers explored in this study, stationary as well as
periodic solutions were found depending on the value of Ha.

In the neighbourhood of the inlet fringing zone the oncoming fluid passes from a re-
gion of low-intensity field to one with a high intensity. The electromotive force u × B0

induces a lower voltage in the low-intensity region and a higher voltage in the region
where the field is stronger. The voltage difference drives a current in the flow direc-
tion for y > 0 and in the opposite direction for y < 0. These currents close in the cross-
stream direction upstream and downstream of the inlet fringing zone. When the fluid
moves through the outlet fringing zone, the voltage difference is inverted, as is the
current circulation. Therefore, upstream of the obstacle, currents circulate clockwise
and produce an induced magnetic field in the normal direction that points downwards,
in accordance with Lenz’s law. Downstream of the obstacle, the current circulation
is anti-clockwise and the induced magnetic field points upwards. Under certain
conditions, only these two main current loops are formed. However, additional current
loops may appear. The number and particular structure of current loops depend on
both Reynolds and Hartmann numbers, as will be shown by the numerical results.

In the duct flow at the entrance or exit of a magnet, the sidewalls confine the current
loops in such a way that they are elongated in the flow direction, intensifying the
streamwise current density components. This is of particular importance when the
sidewalls are electrically insulated. The current density components in the streamwise
direction give rise to Lorentz forces that point towards the sidewalls. This provokes
the expulsion of the volumetric flow from the core towards the side layers with high
velocities and, therefore, an M-shape velocity profile is created (Müller & Bühler 2001;
Moreau 1990). In contrast, in the flow past a magnetic obstacle where sidewalls are
absent, current loops tend to spread in the flow domain. In the region of high-intensity
field, currents close through the lateral fringing zones and, consequently, cross-stream
current density components are dominant. In fact, in this region electric currents
from the upstream and downstream loops reinforce flowing in the negative direction,
transverse to the main flow. The current density interacts with the magnetic obstacle
field giving rise to a non-uniform Lorentz force that points mainly in the streamwise
direction, opposing the flow and creating vorticity. This causes a pressure increase in
the neighbourhood upstream of the obstacle, while downstream it drops abruptly. For
Re = 100 and a small Hartmann number (Ha ≈ 1–10), the fluid moves with reduced
velocity through the high-intensity field region. As the Hartmann number increases
and the opposing Lorentz force is stronger, the oncoming fluid tends to flow around
the obstacle and a noticeable cross-stream velocity component appears. Figure 2 shows
streamtracers for Re = 100 with two different Hartmann numbers (Ha= 20 and 30). It
can be seen that the flow past a magnetic obstacle displays some of the characteristic
regions observed in the flow around a cylinder, namely a region of retarded flow
upstream of the obstacle, two sidewise regions of displaced and accelerated flow,
and a wake downstream of the obstacle (Zdrakovich 1997; Oertel 1990). In the
neighbourhood of the lateral fringing zones, the velocity is higher than near the
central region where the opposing force is more intense. This leads to a velocity
deficit in the central region, and the creation of two lateral free-shear layers parallel
and aligned with the main flow direction where a maximum and a minimum of
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(a) (b)

Figure 2. Streamtracers in the flow past a magnetic obstacle for Re = 100. (a) Ha = 20; (b)
Ha = 30. The applied field comes out of the plane of flow. The dotted square denotes the area
covered by the magnetized surfaces.

vorticity exist. When the Hartmann number is about 20 (figure 2a) the fluid may
become stagnant in the region of intense field, while far away from the obstacle
the flow remains nearly unperturbed. If the Hartmann number is sufficiently high
(Ha ≈ 22), vortices can appear in the near wake. These vortices, although created
by Lorentz forces, are formed and evolve inside a negligible magnetic field. When
convective effects and the magnetic braking are strong enough, the wake can become
destabilized and present unsteady behaviour (figure 2b). In fact, a periodic vortex
shedding similar to the von Kármán street in the flow around a cylinder, can be
observed. In § 5 a detailed analysis of the flow structure will be carried out for the
restricted values of Reynolds and Hartmann numbers considered in this study. In the
following section we present the numerical methods used in this work.

4. Numerical methods
A numerical simulation approach has been taken to treat the problem of the flow

past a magnetic obstacle. In this section, we summarize the numerical methods and
the tests carried out to evaluate the numerical performance.

4.1. Boundary conditions

The main flow was assumed to be in the x-direction and, at the inlet, a uniform flow
was prescribed:

u = 1, v = 0. (4.1)

In numerical studies involving vortex shedding, the formulation of outflow boundary
conditions deserves special attention in order to avoid numerical inaccuracies. The
most common boundary conditions studied in the literature of flows around cylinders
are Neumann and convective boundary conditions. Several numerical analyses have
been carried out to determine the performance of these conditions in different
flow situations (Zdravkovich 1997; Bruneau & Fabrie 1994; Sohankar, Norberg &
Davidson 1998, 1999). Although convective boundary conditions have shown the
possibility of reducing the distance from the obstacle to the outlet without affecting the
global flow pattern, Neumann conditions perform well provided that the downstream
distance Xd is sufficiently large. In this work, Neumann boundary conditions

∂u

∂x
=

∂v

∂x
= 0 (4.2)
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were applied at the outlet. At the lateral boundaries, symmetry-type conditions
simulating a frictionless wall were imposed:

∂u

∂y
= v = 0. (4.3)

Finally, we assume that the induced field is zero at a long enough finite distance
from the source of the applied field. Therefore, we impose that the single component
of the induced field satisfies the condition

bz |S= 0, (4.4)

where the subindex S denotes the boundaries of the integration domain.

4.2. Numerical solution

The numerical solution was addressed using a formulation based on the primitive
variables, the velocity and pressure, and the induced magnetic field as electromagnetic
variable. A finite difference method on an orthogonal equidistant grid was used to
solve the governing equations (2.13)–(2.15) and (2.17) under boundary conditions
(4.1)–(4.4), assuming a motionless fluid as initial condition. A spatial discretization
of second-order accuracy was done on a staggered grid arrangement while the Euler
method was used for time discretization. Accurate time integration was provided by
choosing a small enough time step (see § 4.4). The velocity components u and v were
defined at the midpoints of the vertical and horizontal surfaces of the computational
cell, respectively, while the pressure and the induced magnetic field were defined at
the centre of the cell. Diffusive terms were discretized using central differences. For
convective terms a mixture of central differences and the donor-cell discretization, as
suggested in Hirt, Nichols & Romero (1975), was implemented. For the solution of
the governing equations, the standard time-marching procedure described in Griebel,
Dornseifer & Neunhoeffer (1998) was extended to consider MHD flows. The time
discretization of the momentum equations was explicit in the velocities and implicit
in the pressure:

u(n+1) = F (n) − δt
∂p(n+1)

∂x
, v(n+1) = G(n) − δt

∂p(n+1)

∂y
,

where

F (n) = u(n) + δt

[
1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− ∂(u2)

∂x
− ∂(uv)

∂y
− u

τ
+

Ha

Re
jyB

0
z

]
,

G(n) = v(n) + δt

[
1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ∂(uv)

∂x
− ∂(v2)

∂y
− v

τ
− Ha

Re
jxB

0
z

]
.

The continuity equation was satisfied by solving a Poisson equation for the pressure
p(n+1) at time tn+1. This algorithm corresponds to the Chorin projection method
(Chorin 1968). The Poisson equation was solved subject to homogeneous Neumann
conditions on the boundary, simulating far-field conditions commonly used in the
analysis of flows past solid obstacles in unbounded regions. The Gauss–Seidel method
was used for the solution of the pressure Poisson equation, which was iterated until
the divergence of the velocity field reached values of the order of 10−5. Equation
(2.17) for the induced magnetic field bz was solved at tn+1 using the same method.
Electric current density components were calculated through (2.18), for which the
divergence-free condition is satisfied based on the vector identity ∇ · (∇ × b) = 0.
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4.3. Global flow coefficients

In order to characterize the performance of the numerical scheme under different
conditions, the behaviour of two global flow coefficients was analysed. Due to the
similarities with the flow around bluff bodies, we used the base pressure coefficient
and the Strouhal number to characterize the flow. The hydrodynamic base pressure
coefficient is defined as (Blackburn & Henderson 1999)

Cpb = 1 +
p180 − p0

pd

, (4.5)

where p0 and p180 are the pressures at the furthest upstream and downstream points
on the body surface, and pd is the free-stream dynamic pressure ρU 2/2. Since in our
problem there is no solid obstacle, we consider p0 and p180 to be the pressures on the
axial midline at the furthest upstream and downstream points, respectively, on the
perimeter of the projection of the magnetized surfaces on the plane of motion. We
found that Cpb or its negative (known as the base suction coefficient), are suitable
quantities for the description of the present problem. In fact, it has been found that,
in the flow around bluff bodies, these coefficients respond sensitively to the changes
in the flow instabilities in different flow regimes (Williamson 1996).

The Strouhal number is commonly used to characterize vortex shedding phenomena
and is defined as

St =
f L

U
(4.6)

where here f is the shedding frequency. In this study, the Strouhal number was
determined from the fluctuating values of vorticity in the wake behind the obstacle.

4.4. Numerical grid resolution, time step and obstacle location

In the numerical simulation of hydrodynamic flows around bluff bodies it is common
to use non-uniform grids that allow a finer resolution near the solid body and a
coarser one in the wake behind it (e.g. Sohankar et al. 1998, 1999; Blackburn &
Henderson 1999). An accurate resolution of boundary layers on the solid body is a
requirement for an adequate description of the flow. However, a uniform grid has
been used to deal with the flow around a square cylinder under a uniform magnetic
field (Mück et al. 2000). These authors claim that a non-uniform grid seems not to
be appropriate because numerical diffusion may dominate over the MHD damping.
In the present problem, the use of an orthogonal equidistant grid appears to also be
the most convenient choice. Since no solid body exists in the integration region, there
are no thin boundary layers to resolve. However, a sufficiently fine grid is needed
to resolve the shear layers that are formed in the neighbourhood of the magnetic
obstacle and in the flow wake.

In this work, two different Reynolds numbers were explored, namely 100 and 200.
In both cases the Hartmann number varied in the range 1 � Ha � 100. Under these
conditions, numerical experiments have shown the appearance of flow structures with
different typical sizes. The smaller ones are comparable with the length of the
magnetized surfaces in the neighbourhood of the magnetic obstacle, but much larger
structures are also formed in the wake. These structures were also observed in the
experiments by Honji & Haraguchi (1995). Therefore, a suitable grid must be able to
fully resolve this kind of structure. The blockage parameter in the flow configuration
used in the present study was fixed at 5 % and the length of the flow domain was varied
according to the Reynolds number. This length was either 35 or 50 units for Re= 100,
and 35 for Re = 200. Several numerical tests indicated that reasonable results can be
obtained with a minimum of 8 points in the cross-stream direction and 4–5 points
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in the streamwise direction per unit area. For Re =100, most of the computations
were performed using constant cell sizes of 
x = 0.21 and 
y =0.1 with a grid size
211 × 201. The grid convergence was checked through numerical tests using 
x =0.1,

y = 0.06 (10 and 16 nodes in the streamwise and cross-stream directions, with a grid
size 351 × 341) and 
x = 0.4, 
y = 0.2 (2.5 and 5 nodes in the streamwise and cross-
stream directions with a grid size 101×101). It was found that the flow is well-resolved
with cell sizes 
x = 0.21 and 
y = 0.1: results showed a difference of less than 3 % in
the base pressure coefficient and the Strouhal number for the case 
x = 0.1, 
y = 0.06.
For Re = 200, smaller cell sizes were used, 
x = 0.15 and 
y = 0.09, with the grid size
233 × 221, and grid convergence was also verified. From numerical calculations of
two-dimensional flows around cylinders Sohankar et al. (1998) recommend that for
the range Re � 200 the cell Reynolds number, based on 
x , should be less than 30.
This is indeed the case for all flows treated in this work.

We initiated the time-marching calculations with the fluid at rest. The effects of the
integration time step on the global flow behaviour were also evaluated. For Re = 100,
negligible variations of less than 1 % were detected in the Strouhal number when the
time step changed from 0.005 to 0.0025. The same variation in 
t yields a difference
of less than 2 % in the base pressure coefficient. Therefore, the value 
t = 0.005 was
considered to be small enough to guarantee accurate computations.

Several numerical tests were performed to determine a suitable location of the
magnetic obstacle. The base pressure coefficient and the Strouhal number were used
to evaluate changes in the global flow pattern due to the obstacle location, so that inlet
effects as well as upstream effects from the outlet can be minimized. For both Re= 100
and 200, it was determined that an upstream distance Xu = 10 and a minimum down-
stream distance Xd = 25 guarantee results that are nearly independent of the location
of the obstacle. Similar results were found by Sohankar et al. (1998) at moderate
Reynolds numbers (45 � Re � 200) using free-stream conditions, equation (4.1), and
Neumann outflow conditions, equation (4.2).

Evidently, Xu, Xd and H are relevant not only because of the hydrodynamic effects,
but also because of magnetohydrodynamic considerations. In fact, these distances
have to be long enough to allow the induced magnetic field to approach zero at the
boundaries. Incidentally, the induced field decays very fast: in the range of Hartmann
numbers explored in this work it varies from values of the order 10−2 near the zone
of maximum applied magnetic field strength to 10−4 within a distance of 10 units in
the streamwise direction, and to 10−6 within the same distance in the cross-stream
direction. Therefore, geometrical factors are mainly determined in compliance with
hydrodynamic requirements.

5. Numerical results
We now present the numerical results for the two Reynolds numbers explored, 100

and 200, in the range of Hartmann numbers 1 � Ha � 100. Under these conditions,
the laminar flow may display either steady or time-dependent solutions. For each
Reynolds number, three different laminar flow regimes were detected according to the
value of the Hartmann number: steady, transition and periodic vortex shedding. In
what follows, we present a description of these regimes for Re =100 and 1 � Ha � 100.
Afterwards, we discuss the variations found as the Reynolds number grows.

5.1. Steady flow

For Re= 100, this regime appears in the range 1 � Ha < 20. Once the transient state
finishes, the flow shows a stable time-independent behaviour characterized by the
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Figure 3. (a) Induced magnetic field isolines. (b) Vorticity isolines. (c) Streamwise velocity
component and (d) cross-stream velocity component vs. cross-stream coordinate. (e) Vorticity
vs. cross-stream coordinate. (f ) Vorticity vs. streamwise coordinate. Re= 100, Ha = 10, N = 1.

formation of two loops of induced magnetic field up- and downstream of the obstacle
and a long, low-velocity wake behind it. Figure 3(a, b) shows the induced magnetic
field and vorticity isocontours for the case Re= 100, Ha= 10, that corresponds to
N = 1. The projection of the magnetized surfaces on the plane of motion is shown
through a unit square for visualization purposes. The induced field takes negative
values upstream of the obstacle and smoothly changes to positive values as it goes
downstream. Inside the obstacle, the current is distributed uniformly and points in
the negative y-direction; therefore, the interaction with the magnetic field produces a
Lorentz force that opposes the fluid motion. Consequently, the pressure rises upstream
as the obstacle is approached and drops suddenly downstream in a distance on the
order of the characteristic length. Symmetry with respect to the mid-horizontal axis
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can be observed; notice that the effect of convection is clearly shown not only for
the vorticity but also for the induced magnetic field, whose isocontours are slightly
elongated in the flow direction. The wake extends along the whole downstream
integration region while its width of about 4 units remains approximately constant. In
figure 3(c–f ) the velocity and vorticity profiles for the same Reynolds and Hartmann
numbers are presented. They resemble the profiles found in the laminar flow around
a cylinder for low Reynolds numbers (Zdrakovich 1997; Oertel 1990). The velocity
deficit caused by the braking of the fluid in the obstacle region increases with the
streamwise distance. The deficit is of about 5 % at a distance of 1 unit upstream of the
obstacle centre (retarded flow region) and reaches about 30 % at a distance of 5 units
downstream from that point (see figure 3c). The cross-stream velocity component is
one order of magnitude smaller than the streamwise component, with its highest value
at the obstacle centre (see figure 3d). The occurrence of a cross-stream velocity com-
ponent in the obstacle region gives rise to a local shear flow that is more pronounced
the higher the Hartmann number. However, no stagnation nor recirculating flow
regions are observed. This is the main feature of the flow in this range of Hartmann
numbers. Vorticity profiles in figures 3(e) and 3(f ) display negative and positive
regions, up and down the mid-horizontal axis, respectively. Notice that the vorticity
magnitude at the end of the wake (40 units dowstream of the obstacle) remains at
50 % of its maximum value, which is taken about three units downstream of the
obstacle centre.

5.2. Transition flow

For Re =100, transition flow occurs in the range 20 � Ha � 25. In this regime the flow
develops a time-periodic behaviour characterized by the formation of elongated vor-
tices in the near wake that are eventually shed. The periodic flow has been mainly
characterized by analysing the time dependence of vorticity in the wake. Figure 4
shows the vorticity as a function of time at the axial midline at a position 15 units
downstream of the centre of the obstacle, for different Hartmann numbers. For Ha=
20 an incipient oscillation is detected, but it is damped out after nearly 75 dimen-
sionless time units. The velocity field is very similar to those of the previous regime,
presenting no recirculation nor stagnation regions. For Ha= 21 the oscillation is
sustained longer and a very weak recirculation region is formed outside the magnetic
obstacle, in what can be called the near wake. This region is composed of upper and
lower vortices with clockwise and anticlockwise circulation, respectively. The vortices
start forming 2 units downstream of the obstacle centre and have an approximate
length of 2 units and a width of 0.5 each. Two stagnation points can be identified
at the extremes of this region. The value Ha= 21.5 appears to be the threshold for
sustained flow oscillations; it corresponds to an interaction parameter N = 4.6. As the
Hartmann number is increased to 22, the vorticity oscillation is maintained with a
small, variable amplitude. The flow field displays a wave-like motion along the wake.
The recirculation is more intense and starts 1 unit from the centre of the obstacle,
the length of the vortices growing to approximately 6 units, keeping the same width.
For Ha= 23 vortex shedding arises and the vorticity at the mid-wake axis presents a
uniform growth in amplitude until it reaches, after a transient time, a constant value.
Figure 5 shows the velocity field and vorticity isolines at t =300 for this Hartmann
number. Analysis of instantaneous velocity fields reveals that vortices are no longer
symmetically located one above the other, but are displaced (see figure 5a). Vortices
travel a distance of about 7 units along the wake before complete damping, after
which a wavy motion remains in the rest of the domain that can be identified as the
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Figure 4. Vorticity as a function of time on the centreline at a distance of 15 units
downstream the centre of the magnetic obstacle for different Hartmann numbers. Re= 100.

far wake (see figure 5b). For Ha= 25 the vortex shedding process is well-established
and the vorticity reaches its constant amplitude in a reduced transient time.

5.3. Periodic vortex shedding flow

For Re=100 the periodic vortex shedding appears in the range 25<Ha � 100. Figure 6
shows instantaneous vorticity isocontours for Ha= 30 (N =9). This is taken as a
reference value for the description of the time-periodic flow regime. The evolution
of the wake can be observed from its incipient formation to the establishment of
the periodic vortex shedding. Initially, the formation of shear layers at both sides
of the obstacle is promoted. They remain parallel and aligned with the main flow
direction, displaying a maximum and minimum of vorticity a few units downstream
the obstacle centre. As the flow travels downstream, the shear layers become unstable.
The onset of the instability is manifested by the appearance of a transverse oscillation
on the mid-horizontal axis along the wake, presenting a wavelength of about 10 units,
which remains approximately constant in time while the amplitude of the oscillation
grows. The instability first appears far downstream from the magnetic obstacle,
approximately 8 length units from its centre, where both the applied and induced
magnetic fields are negligible. This means that the instability is related to the specific
shape of the velocity profile, which is formed by the action of the magnetic field near
the obstacle. As time proceeds, the wake develops in the cross-stream direction also
and achieves a span of more than 10 units. A close resemblance with the wake formed
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Figure 5. (a) Detailed view of the instantaneous velocity field in the near wake.
(b) Instantaneous vorticity isolines. t = 300, Ha = 23.

behind a cylinder is observed. However, the flow around a cylinder becomes unstable
due to intrincate mechanisms that involve adverse pressure gradients in the viscous
boundary layers and interactions with the near wake. It is worth noting that in the
magnetic obstacle flow, although the instability itself results from the velocity profile,
it is not directly affected by the magnetic field. Therefore, as in the flow around a
cylinder, in the present case the instability evolves in the absence of a magnetic field.

The plot of vorticity as a function of time is very similar to that corresponding to
Ha= 25 (see figure 4). For Ha= 30 a transient time of about 100 time units elapses
before the vortex shedding appears. The transient time is slightly reduced the higher
the Hartmann number. The Strouhal number that characterizes the vortex shedding
was close to 0.1, which differs from the values around 0.150 usually reported for the
two-dimensional flow past a cylinder (e.g. Sohankar et al. 1998). The Strouhal number
was calculated at downstream distances of 7.5 and 15 units from the obstacle centre,
presenting variations of less than 1 %. Honji & Haraguchi (1995) found a Strouhal
number of 0.1 in their experiments with a moving magnet in a thin layer of an
electrolytic solution. However, the coincidence with the experimental value should
be taken with caution, since important differences between the experiment and the
present numerical calculations exist. In the experiment, the Hartmann number was
close to 1, but an additional braking was introduced by injecting a direct current
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Figure 6. Instantaneous isolines of vorticity. Re= 100, Ha = 30, N = 9.

transversally to the flow. Also, the experimental blockage factor was β = 0.5, ten times
bigger than the one used in the present simulations. In figure 7, instantaneous velocity
fields are presented for Ha= 30 at the early stages of the wake formation, the last one
being at a time when the vortex shedding is already established. Initially (t = 5), the
flow is deflected in the obstacle zone. Later, a couple of counter-rotating vortices are
formed inside the obstacle and in the near wake (t = 10). As time proceeds, vortices are
first elongated (t = 15) and then travel downstream away from the obstacle almost
without deformation. In a later time step, vortices exhibit further elongation and
displacement from their symmetric original arrangement and quasi-stagnant zones are
formed in the near wake. Finally, when vortex shedding appears (t = 200), vortices are
completely displaced and the near wake is reduced, the vortices being damped within
a distance of 4 units. Figure 8 shows the instantaneous isocontours of the induced
magnetic field both at very early stages of development and later, when vortex shedd-
ing is well-established. The growth of the induced magnetic field zone is clearly shown,
displaying up- and downstream closed loops. It can be observed that the inner loop
formed behind the obstacle is ‘strangled’ until two well-differentiated loops with a
size slightly larger than that of the obstacle are formed within the external loops.
Williamson (1996) emphasized that the base suction coefficient (−Cpb) is particularly
useful as a basis for discussion of the various flow regimes. Figure 9(a) shows the base
suction coefficient as a function of the Hartmann number. The inflection point in
the curve observed around Ha= 30 separates two different dynamic behaviours. For
Ha< 30 the Lorentz force in the obstacle zone has no transversal components and
presents a uniform opposition to the oncoming flow on the central axial line; therefore,
the pressure drop in the zone covered by the magnetized plates (from which −Cpb is
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calculated, see (4.5)) is rather smooth and increases with Ha. For Ha> 30, however,
the pair of separated downstream inner current loops leads to the appearance of
transversal components of the Lorentz force. This provokes a non-monotonic pressure
drop in the square zone covered by the magnetized surfaces; the pressure increases
locally at the downstream edge of the square causing a decrease of −Cpb. Figure 9(b)
shows the maximum pressure drop, (
p)max, created by the magnetic obstacle. It
is calculated by taking the difference of the maximum and minimum pressures on
the central axial line. The monotonic increase of (
p)max as the Hartmann number
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Figure 9. (a) Base pressure coefficient vs. Hartmann number. Re= 100. (b) Maximum pressure
drop in the central axial line vs. Hartmann number. Re= 100. (c) Strouhal number vs.
Hartmann number. (d) Obstacle length estimated from stagnation point vs. Hartmann number.

grows reflects the amplification of the pressure drop caused by the intensification
of electromagnetic braking. The separation between the points of maximum and
minimum pressure increases with the Hartmann number; for Ha < 30 these points
are close to the borders of the square defined by the projection of the magnetized
plates while for Ha � 30 the point of minimum pressure is displaced downstream and
the separation between points of maximum and minimum pressure may be as large
as 5 length units for Ha= 100. Although figure 9(a, b) presents instantaneous values
of −Cpb and (
p)max, these quantities display a negligible variation with time.

Two main effects are observed when the Reynolds number is increased from 100
to 200. First, the value of the Hartmann number that characterizes the onset of the
periodic vortex shedding regime rises from 21.5 to 26. It corresponds to a decrease of
the interaction parameter from 4.6 to 3.4. This reveals that the higher the Reynolds
number, the stronger the Lorentz force required to overcome inertial effects and
destabilize the flow. Second, as occurs in the flow around bluff bodies, the increase in
the Reynolds number leads to a rise in the Strouhal number associated to the vortex
shedding. In figure 9(c) the Strouhal number is shown as a function of the Hartmann
number for Re =100 and 200. Both curves present a similar behaviour with Ha and
display a difference of approximately 13 % for Ha � 40. The Strouhal number exhibits
a weak dependence on Ha, similarly to the behaviour observed in other MHD flows
where the vortex shedding phenomenon appears (Bühler 1996; Mück et al. 2000). For
both Re= 100 and 200, St rises to a maximum value and thereafter presents a slight
decrease with Ha. The maximum values reached by St are 0.099 and 0.111 for Re =100
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and 200, respectively, which are smaller than the values reported by Sohankar et al.
(1998) (0.150 and 0.167, respectively) from two-dimensional simulations of flows
around square cylinders. Notice, however, that the Reynolds number is based on the
length of the magnetized plates, which has been taken as a characteristic length of the
obstacle. But actually, the effective obstacle size depends on the Hartmann number in
the sense that, for a given Re, the value of Ha determines the extent to which the flow
penetrates the obstacle. In the vortex shedding regime the Hartmann braking is strong
enough to stop the flow and produce a stagnation point on the centreline upstream
of the obstacle centre. Thus, an approximate estimation of the effective length, Leff ,
can be given by twice the distance between the point of maximum magnetic field
strength and this stagnation point. In figure 9(d), Leff is plotted as a function of Ha
for Re= 100 and 200. It clearly shows that the effective length is larger the larger
Ha is. The initial rise of the Strouhal number as Ha increases may reflect the fact
that the effective Reynolds number, calculated with Leff instead of L, also increases.
However, this tendency is not maintained and for Hartmann numbers larger than
30–40 the Strouhal number displays a slight (but constant) decrease. This might be a
dissipative effect caused by Joule heat as the Hartmann number grows.

6. Conclusions
Previous investigations on MHD vortex shedding have considered the effect of a

magnetic field on vortex formation and evolution. However, in these studies vortices
were generated by solid obstacles or inhomogeneities in the electrical conductivity of
the walls under uniform magnetic fields. For a sufficiently high magnetic field, vortices
present a tendency towards two-dimensionality, with their axis parallel to the applied
field and a Hartmann braking damping the motion. The flow past a magnetic obstacle
presents a different scenario, that is, the creation of vortices by Lorentz forces and
their evolution under conditions where magnetic field is absent or negligible.

The main objective of the present investigation is to draw attention to the possibility
of producing steady and unsteady generation of vortices in non-uniform localized
magnetic field distributions. This has immediate implications for heat transfer en-
hancement applications. The key aspect of the flow analysis is the consideration of
inertial effects and the existence of electromagnetic non-uniformities given by applied
magnetic field gradients. We have taken a quasi-two-dimensional approximation
that introduces the effect of boundary layers through a Hartmann–Rayleigh friction
term. This term models the Hartmann braking near the zone of high magnetic field
strength, and transforms to a Rayleigh friction in zones where the magnetic field is
negligible. However, we have considered conditions where inertial effects dominate
over Hartmann–Rayleigh friction. The numerical results have shown that the problem
studied in this work presents many similarities with the flow around bluff bodies,
displaying steady as well as time-periodic vortical flow regimes. It is because of these
similarities that the term magnetic obstacle has been introduced, and it appears that
a scenario analogous to that found in the flow around a cylinder may arise for
the flow past a magnetic obstacle. For a fixed Reynolds number, an increase in the
Hartmann number reinforces the braking of the fluid in the high magnetic field zone,
producing a flow around the obstacle. This causes the intensification of shear layers
in the lateral fringing zones and the formation of a low-velocity (quasi-stagnant)
region either inside the obstacle or in the near wake behind it. For Re = 100–200
either steady or time-periodic regimes are observed according to the value of the
Hartmann number. For Re = 100 and Ha ≈ 21, tenuous steady elongated vortices are
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formed behind the obstacle. An increase in the Hartmann number leads to self-excited
wake oscillations and eventually to the establishment of a vortex shedding process. The
onset of the instability appears when the interaction parameter N is O(1). However,
the mechanism that gives rise to the appearance of vortical structures and periodic
vortex shedding is clearly different from that in the flow past solid obstacles.
Similarly to the MHD flow in a channel with a non-uniform electrical wall conduc-
tivity (Bühler 1996), the velocity deficit across the shear layers is the driving mechanism
for instabilities. The Strouhal number characteristic of the vortex shedding is smaller
than the one found in the flow around solid cylinders. As in MHD flows past solid
obstacles, a weak variation of the Strouhal number with the Hartmann number was
found. Besides the increase of the Hartmann number required for the onset of the
instability, the increase in Re does not result in any new effects except for a slight
rise in the Strouhal number, an event also observed in the flow past bluff bodies. It is
worth noting that the periodic vortical regime can be reached at relatively small Hart-
mann numbers and at Reynolds numbers at which similar phenomena are observed
in the flow around solid bodies. The experiments by Honji (1991) and Honji &
Haraguchi (1995) showed the possibility of obtaining vortex shedding and a wavy
wake in electrolytic fluids using permanent magnets and injecting a transversal electric
current. Hence, the experimental verification of the vortex shedding process under
conditions similar to those of the present investigation appears to be an attainable
objective.

The few cases examined here give a glimpse of what appears to be a very rich flow
behaviour. Although a wider parameter study is required to establish a more detailed
picture of different flow regimes, the exploration of Reynolds numbers higher than
200 has to be undertaken with caution. We have limted our calculations to Re � 200
in order to ensure that the flow is laminar. Higher Re may result in turbulence in
the far wake. In fact, this was observed in the quasi-two-dimensional flow studied
by Bühler (1996). We have justified the applicability of the quasi-two-dimensional
approach in the flow past a magnetic obstacle in the laminar regime, but further
modifications of the model and a different computational technique may be needed
if the flow is turbulent. Applicability of quasi-two-dimensional models to turbulent
MHD flows under special constraints leading to two-dimensionality is currently being
debated (see for instance Thess & Zikanov (2004)). The development of a numerical
scheme capable of resolving three-dimensional structures and differentiating different
transitional scenarios is a future task. However, since many fundamental features of
the flow are retained in the quasi-two-dimensional approximation, we believe that such
an approach is justified provided that the Reynolds number is � 200. In particular, it
allows a detailed study of the wake structure and the transition between stationary
and non-stationary regimes.
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for the support received during his sabbatical stay at UCLA. Support from
UC MEXUS-CONACYT Faculty Fellowship Program and DGAPA-UNAM under
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